Compare commits
2 Commits
b4848320ee
...
2fed4706b6
| Author | SHA1 | Date | |
|---|---|---|---|
| 2fed4706b6 | |||
| ab63ebcf52 |
8
KompFunc.v
Normal file
8
KompFunc.v
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
Definition cf := fun t0 t1 t2 : Type
|
||||||
|
=> fun (f : t1 -> t2) (g : t0 -> t1) => fun x => f (g x).
|
||||||
|
Implicit Arguments cf [t0 t1 t2].
|
||||||
|
Notation "f @ g" := (cf f g) (at level 65, left associativity).
|
||||||
|
|
||||||
|
Definition cf_assoc := fun (t0 t1 t2 t3 : Type)
|
||||||
|
(f : t2 -> t3) (g : t1 -> t2) (h : t0 -> t1)
|
||||||
|
=> (refl_equal _) : (f @ g) @ h = f @ (g @ h).
|
||||||
34
PeanoMult
34
PeanoMult
@@ -1,34 +0,0 @@
|
|||||||
Inductive nat : Set :=
|
|
||||||
| O : nat
|
|
||||||
| S : nat -> nat.
|
|
||||||
|
|
||||||
Require Import Coq.Arith.Plus.
|
|
||||||
|
|
||||||
Definition mult_comm : forall n m, n * m = m * n.
|
|
||||||
Proof.
|
|
||||||
intros. elim n.
|
|
||||||
auto with arith.
|
|
||||||
intros. simpl in |- *. elim mult_n_Sm. elim H. apply plus_comm.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Definition mult_comm := fun n:nat
|
|
||||||
=> fix rec (m : nat)
|
|
||||||
: n * m = m * n
|
|
||||||
:= match m as m return n * m = m * n with
|
|
||||||
| O => sym_eq (mult_n_O _)
|
|
||||||
| S pm => match rec pm in _ = dep return _ = n + dep
|
|
||||||
with refl_equal =>
|
|
||||||
match mult_n_Sm _ _ in _ = dep return dep = _
|
|
||||||
with refl_equal => plus_comm _ _ end
|
|
||||||
end
|
|
||||||
end.
|
|
||||||
|
|
||||||
Definition mult_comm := fun n:nat
|
|
||||||
=> nat_ind (fun m => n * m = m * n)
|
|
||||||
(sym_eq (mult_n_O _))
|
|
||||||
(fun _ rec =>
|
|
||||||
eq_ind _ (fun dep => _ = n + dep)
|
|
||||||
(eq_ind _ (fun dep => dep = _)
|
|
||||||
(plus_comm _ _) _ (mult_n_Sm _ _))
|
|
||||||
_ rec).
|
|
||||||
|
|
||||||
Reference in New Issue
Block a user